Structured discussion and early failure prediction in feature requests
نویسنده
چکیده
Feature request management systems are popular tools for gathering and negotiating stakeholders’ change requests during system evolution. While these frameworks encourage stakeholder participation in distributed software development, their lack of structure also raises challenges. We present a study of requirements defects and failures in large scale feature request management systems, which we build upon to propose and evaluate two distinct solutions for key challenges in feature requests. The discussion forums on which feature request management systems are based make it difficult for developers to understand stakeholders’ real needs. We propose a tool-supported argumentation framework, DoArgue, that integrates into feature request management systems allowing stakeholders to annotate comments on whether a suggested feature should be implemented. DoArgue aims to help stakeholders provide input into requirements activity that is more effective and understandable to developers. A case study evaluation suggests that DoArgue encapsulates the key discussion concepts on implementing a feature, and requires little additional effort to use. Therefore it could be adopted to clarify the complexities of requirements discussions in distributed settings. Deciding how much upfront requirements analysis to perform on feature requests is another important challenge: too little may result in inadequate functionalities being developed, costly changes, and wasted development effort; too much is a waste of time and resources. We propose an automated tool-supported framework for predicting failures early in a feature request’s life-cycle when a decision is made on whether to implement it. A costbenefit model assesses the value of conducting additional requirements analysis on a body of feature requests predicted to fail. An evaluation on six large-scale projects shows that prediction models provide more value than the best baseline predictors for many failure types. This suggests that failure prediction during requirements elicitation is a promising approach for localising, guiding, and deciding how much requirements analysis to conduct.
منابع مشابه
Data Mining Performance in Identifying the Risk Factors of Early Arteriovenous Fistula Failure in Hemodialysis Patients
Background and Objectives: Arteriovenous fistula is a popular vascular access method for surgical treatment of hemodialysis patients. The method, however, is associated with a high rate of early failure varying in the range of 20-60%. Predicting early Arteriovenous fistula failure and its risk factors can help reduce its incidence, its hospitalization rate, and associated costs. In this study, ...
متن کاملA General Investigation on the Combination of Local and Global Feature Selection Methods for Request Identification in Telegram
Nowadays, the use of various messaging services is expanding worldwide with the rapid development of Internet technologies. Telegram is a cloud-based open-source text messaging service. According to the US Securities and Exchange Commission and based on the statistics given for October 2019 to present, 300 million people worldwide used telegram per month. Telegram users are more concentrated in...
متن کاملA Hybrid Business Success Versus Failure Classification Prediction Model: A Case of Iranian Accelerated Start-ups
The purpose of this study is to reduce the uncertainty of early stage startups success prediction and filling the gap of previous studies in the field, by identifying and evaluating the success variables and developing a novel business success failure (S/F) data mining classification prediction model for Iranian start-ups. For this purpose, the paper is seeking to extend Bill Gross and Robert L...
متن کاملE-politeness in Iranian English Electronic Requests to the Faculty
This paper reports the findings of a study designed to investigate English e-requestsof Iranian EFL postgraduate students (i.e., nonnative speakers of English) made totheir professors during their education at Islamic Azad University, Najaf AbadBranch, Isfahan, Iran, to find out types of politeness features employed in the students’e-mails and the extent to which these features might influence ...
متن کاملA New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum
Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012